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Construction of the hyperspherical functions for the quantum 
mechanics of three particles 

H Mayer 
Fakultat fur Physik der Universitat Freiburg I Br, 78 Freiburg I Br, Germany 

Received 10 October 1974, in final form 9 June 1975 

Abstract. A solution of the differential equation for the grand angular momentum in 
hyperspherical coordinates is given by simple algebraic means avoiding complicated recur- 
rence formulae. 

1. Introduction 

In recent years, a new approach has been made to the quantum mechanical three-body 
problem, using hyperspherical functions which form simultaneously a representation of 
the groups of three-dimensional space rotations and of the permutations of three 
particles. Some of the authors who have tried to carry through this general idea have 
emphasized its group theoretical side, and some have tried to solve explicitly the 
Schrodinger equation for the special case of three free particles. 

Dragt (1965) and Simonov (1966) laid the foundations to the group theoretical 
approach of constructing the hyperspherical functions which constitute a complete 
orthogonal set on the unit sphere in six-dimensional space. Their results, however, 
valuable for the principal understanding of the problem, turned out to be rather tedious 
for practical use, even for small values of angular momentum J .  On the other hand, 
Zickendraht (1965) started from the Schrodinger equation and found functions up to 
total angular momentum J = 2, but the coordinates used are unusual in the theory of 
hyperspherical functions. Whitten and Smith (1968) started from the same point of 
view but their method becomes very cumbersome even for small values of grand angular 
momentum K (where J < K ) .  Hyperspherical functions are given up to K = 4 but no 
generalization has been obtained for higher values of K or J .  

In the present paper we also follow the way of directly solving the Schrodinger 
equation of three free particles, making extensive use of the results of the authors quoted 
above to whom we refer the reader for details. In $ 2  of this paper we introduce the 
coordinates and the basic differential equation for the operator A2 of grand angular 
momentum, 

A2F = K(K+4)F  (1) 
in these coordinates, following from the Schrodinger equation. In 5 3 the method will 
be developed, for any given angular momentum J ,  to obtain the complete sef of linearly 
independent solutions of (1). Since it will be necessary to distinguish between the cases 
of J + K  even or odd, and another quantum number v 2 0 or v < 0, the method is 
explained in detail only for J + K even and v 2 0 ; formulae for the ather cases are only 
summarized in the appendix. 
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2. The hyperspherical coordinates 

We shall use in position space of any three particles essentially the same coordinates 
which Dragt (1965) has introduced in momentum space for three equal masses. Let 
mi ( i  = 1 ,2 ,3 )  be the masses and Y, the position vectors of the three particles; we then 
define relative coordinates 

x1 = r2-r l  

x2 = r3-  mlrl +m2u, 
m1 +m2 

m l r l  +m2r2 +m3r3 
m ,  +m2+m3 

R =  

Three external coordinates are defined by the Euler angles IX, 6 , ~  describing a rotation 
from space-fixed axes in the centre of mass system into body-fixed axes y l ,  y2  and y ,  x y2 
which make the tensor of inertia diagonal. The convention of Euler angles and rotation 
matrices DLN and dLN is the same as in Rose (1967). Thus the directions of y 1  and y2  
coincide with the principal moments of inertia in the plane of the three particles. With 
the three moments of inertia kept fixed, the vectors x1 and x2 in the body-fixed system 
are connected with y ,  and y ,  by a so called kinematic rotation (Smith 1960) 

x1 = y,  sin+cp-y,cos+cp 

x, = y ,  cos tcp +y2 sin +cp. (3) 

In the plane of three particles in the body-fixed system we define three internal coordin- 
ates. Two of them are connected with the moments of inertia. The hyperradius r is 
defined by 

p r 2  = mlr:+m2ri + m 3 4  

with 

9 m i m 2 m 3  
P =  (ml  + m2 + m3)2’ 

(4) 

( 5 )  

r is connected with the moment of inertia with respect to an axis perpendicular to the 
plane of the three particles 

e,, = pr2. 

The second internal coordinate $ gives the other two momenta 

e,, = p r 2  sin2 $ 

e,, = pr2 cos2 $. ( 7 )  

The third coordinate is the angle cp, which describes the different positions the three 
particles can have once the three moments of inertia are fixed. 

It is helpful to illustrate the three coordinates in the case of three equal particles. 
Figure 1 shows that the hyperradius r is a measure of the spatial extension of the ellipse 
on which the particles lie. For $ = n/4 the ellipse becomes a circle and for II/ = 0 the 
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Figure 1. Relative location of the three particles for three equal masses. 

three particles lie on the x axis. For n/4 < I(/ < n/2 we also get an ellipse, and by inter- 
changing the x and y axes, ie another set of Euler angles, we always have 

e,, < eyy < ezz .  (8) 
The same argument holds for cp > 2n, so that the ranges of definition for cc/ and cp are 

0 Q $ < nI4 

0 Q cp Q 2n. (9) 

In terms of the new coordinates we now get the position vectors r i  in the space-fixed 
system : 

where 

mjmk M = m l + m 2 + m , ,  p .  = ~ 

I k  m j + m k  

and &-'(a,  P,  7 )  = A'( - 7 ,  - P ,  -a )  is the matrix describing the coordinate rotation 
(cf Rose 1967, p 65). 

The angles p, are constants connected with the three masses, 

cos/?, = - 

cosp, = - 

sinP1 2 0 

sin/?, < 0 

p3 = 0. 

For three identical particles we have 

271 p,  = - P 2  = 7 
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The transformation properties of the coordinates under permutations of the three 
particles become very simple. It is obvious from the definitions that r and I) are invari- 
ants, while cp transforms as 

Ecp = 40 

P12cp = -cp 

P23~p = -q+$n 

PI3cp = -cp-$n (13) 
ccp = q+$n 
c 2 cp = (p-tn. 

Here E denotes the identity element, Pij a permutation of two particles and C the cyclic 
permutation. The Euler angles remain unaltered under E,  C and C2, while under 
exchanges of a pair they transform as 

With these new coordinates the Hamiltonian for three free particles becomes-in the 
centre of mass system- 

A' is the operator of grand angular momentum, its eigenvalues are K ( K  +4), where K 
is an integer, so - A 2 / r 2  represents a generalized angular momentum barrier. The 
calculation of A2 is straightforward : 

Here j,, j ,  and j ,  are the angular momentum operators in the body-fixed coordinate 
system which coincide with the principal moments of inertia. The operator A' is the 
angular part of the six-dimensional Laplacian ; it depends on five coordinates, its eigen- 
functions are defined by 

(r, P, 'i ; cp, $1 = KW+ 4FKVJ"'(@, Is, Y ; cp, $1 (17) I \2FkVJaV/I  

and can therefore be classified by five quantum numbers. They are simultaneous eigen- 
functions of the following five operators : 

(i) the grand angular momentum A2, with eigenvalues K ( K  + 4) where K = 0, 1,2, .  . . ; 
(ii) the operator S = 2ia/acp which is connected with permutations of the three 

(iii) the square of angular momentum J2,  with eigenvalues J ( J  + 1) where J < K ;  
(iv) the space-fixed z component J ,  of angular momentum with eigenvalues 

particles and has eigenvalues v = K ,  K - 2,. . . , - K + 2, - K ; 

M = - J ,  - J+ l , . . . ,  J-1,J: 
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(v) an operator solving the degeneracy of the linearly independent solutions still 
existing for given values of K ,  v, J and M .  The set of thus orthogonalized functions is 
distinguished by the quantum number p in (17). 

These properties suggest the expression of F as the finite sum (IN1 < J )  

(a, P, y, rp, $1 = e-ifvrp 1 DJ,,(a, p, y)g ivJp(+) .  (18) 

Putting (1 8) in (1 7) we obtain a system of coupled differential equations for the functions 
g N ( $ )  belonging to each set of quantum numbers K ,  v, J ,  ,U and independent of M in 
consequence of the Wigner-Eckart theorem : 

F K v J M ~  

s 

1 v2 + N 2  - 2 v N  sin 21) J ( J  + 1) - N 2  
+ 2  

cos2 2* sin2 2$ 

N =  - J  , . . . ,  J .  (19) 

We can state some general features of the system: 

and we will therefore leave it out ; 

non-trivial solution for given K ,  v and J ; 

(i) in consequence of the Wigner-Eckart theorem the system is independent of M 

(ii) the g i v J ”  for even and odd N are coupled separately and only one system has a 

(iii) it can easily be seen that 

g p y * )  = gK_’i”($) 

for I’ # 0, so that we have to solve (19) only for v 2 0;  
(iv) for J 2 2 and given K ,  1’ and J there can be more than one independent solution 

of (19). For practical purposes one must orthogonalize these functions and they are 
then labelled by the quantum number p. 

Whitten and Smith (1968) have shown that a solution of (19) can be written in the 

The system of linear equations holding for the coefficients P, however, turns out to be so 
cumbersome that its solution seems rather difficult, except in the simplest cases. 

3. Solution of the differential equations 

In order to solve the system (19) we therefore have chosen another decomposition of the 
functions g ,  , 

g ; ~ ~ ~ ( l l / )  = ( -  1)(~- -~) /2(1  +x)c~+~) /4 (1  - X ) ( ~ - ~ ~ / 4  

with x = sin 2$, ie g,($) is equal to dt:+,(fn - 24b) times a polynomial in sin 2$, which 
has the degree (k  - v)/2. Therefore equation (21) is valid only for v 2 J .  For N running 
from - J  to + J  there would occur for v < J d-functions with lower indices greater than 

( K  - v)/2 

k = O  
1 a t ( K ,  v, J ,  p)xk (21) 
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the upper index. Therefore one has to modify the ansatz (21) for IN1 > v. If we choose 
for N > v 2 0 

(K - N)/2 

g i v J ~ ( $ )  = ( -  1)(v-N)/2(1 +X)(N+v4/4(1 - X ) ( N - v ) / 4  1 at’(K, v, J ,  p)xk (22) 
k = O  

and for - N  > v 2 0 

gtt,J~((IC/) = (- 1)(’-W2(1 + X ) ( l N I - v ) / 4 ( 1  -x)(I”l + v ) / 4  (23) 

with x = sin 2$, the system of equations for the unknown coefficients a[ is very similar 
to that one for v < J and is solved in the same way, perhaps with slight modifications. 

Putting (21) in (19) we easily find a system of linear equations for the unknown 
coefficients a: for every set K ,  v, J, p henceforward omitted : 

( K  - INl)/2 

a;l(K, v, J ,  p)xk 
k = O  

{ k 2  - $ [ J ( J  + 1) - N2]}a: + D+cl[- + 0-a:’ + [ N ( k  - 1) +$N]a;- - D+ar:; 

+ D-Cr:?: + [(K + v)/2 +k] [(K - v)/2 - k +2]a[- = 0 (24) 
with 0 < k < ( K  - v)/2, 

- J ,  - J + 2 , .  . . , J - 2 , J  
- J + l ,  - J + 3  , . . . ,  5-3 ,J -1  

for J + K even 
for J + K odd 

* = (  
and 

D ,  = a(JNlj:(JNT2). 

In the system (24) the number of non-trivial equations exceeds that of unknown co- 
efficients by J for odd, and by J + l for even J + K .  We should therefore expect that no 
solution exists at all. We shall see, however, by closer inspection that even several 
solutions will exist for a given set of values K ,  v ,  J distinguished by the superscript p 
in (21). 

In the following we confine ourselves to even values of J + K (giving results for odd 
J + K in the appendix). We then collect each set of a’s for different N’s in a vector 

(25) 

(26) 

(27) 

a: = (aLJ,ctk - J + 2  , . . . , a i -2 ,a i )  

where k = 0,1,. . . , ( K  -v)/2. The system (3.2) thus can be written in matrix form, 

Aka, + Bk- la,- 1 + ck- 2 a k - 2  = 0, k = 0,1, .  . . , ( K  - ~ ) / 2 .  

A ,  and B, are tridiagonal matrices, the Nth row of A, is 

(0,. . . , O,a(JNI j:(JN-2), k 2 - i [ J ( J +  1 ) - N 2 ] , a ( J N l j ! I J N + 2 ) , 0 , .  . . , O ) ,  

the same row of B, is 

(0,. . . , 0 ,  -$ (JNl j : I JN-2 ) , ( k+~)N,$ (JNl jZ_IJN+2) ,0 , .  . . , O ) .  (28) 
ck is the ( J  + 1)-dimensional unit matrix multiplied by [(K + v)/2 + 2 + k] [ (K - v)/2 - k]. 
The key to the solution of (26) is the following. 

Theorem 1 
(i) The symmetric matrices A , ,  k = 0, 1,. . . , J have eigenvectors ( l k  to the eigenvalue 
zero, ie 

Aka, = 0, k = 0,1, . . . ,  J .  (29) 
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(ii) These vectors U, form an orthogonal basis in the space of ( J  + 1)-dimensional vectors, 
ie 

(Un ,  a,) = 0 n # m, 

and each a, is a linear combination of the ak.  

The rather complicated proof of the existence of the eigenvectors U, will be omitted. It 
has, however, been given rigorously (Mayer 1974). That the vectors ak form a basis is 
easily seen, since from (27)  there follows 

A,  = l k 2 + A o  (30)  

and therefore 

= -k2a , ,  k = 0,1,. . . , J .  

Since A ,  is a real symmetric matrix, its J + 1 eigenvectors ak must form an orthogonal 
set. 

The ak can be expressed in terms of a. which has the components 

UN --!-[( J + N  ) (  J - N  )]1’2, 

- 2’ ( J + N ) / 2  ( J - N ) / 2  

We then have 

(33)  

Here N is the diagonal matrix with the elements 

- J ,  - J + 2  ,..., J - 2 , J .  

Application of the B matrices (3.6) yields the relations 

Boao = 0 

B1al = J ( J + l ) a ,  

B,u, = i k [ J (  J + 1 )  - k(k - 1)]ak- 1 ,  2 < k < J  
and 

B,ao = la, 

Blal = ( l - l ) ~ Z + $ ( l + l ) J ( J + l ) a ,  
(34)  

BIak = ( I  - k)U,+ 1 + + ( I +  k ) [J (  J + 1 )  - k(k  - 1)]ak- 1 , 2 < k < J  
l = O , 1 , 2  , . . . .  

Knowing the basis vectors a, and A p k ,  Btak, we can expand the solution vectors uk into 
linear combinations of the a, : 

J 

ak = C .Ea,. 
p = o  

The first equation of the system (26)  is 

(35)  

Aoao = 0, (36)  
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hence from (31), a. = otao so that og is not determined by this equation. Since Boao = 0 
we have from (26) 

There follows Alal  = 0 or, from (35) ,  
Ala,+Boao = 0. (37) 

J 

o ;Alap  = 0. 
p = o  

From (30) we have, on the other hand, 

A l a p  = (1 - P 2 ) a p  

which for p = 1 vanishes. Hence the coefficient ci cannot yet be determined. 
It is easily seen by induction that the following theorem holds here. 

Theorem 2 
The vector a ( k ,  0 < k < ( K  - v)/2 is 

6) 
Mk 

ak = O.k2pa2p k even 

(ii) uk = o k 2 p + l a 2 p + l  k odd 

p = o  

Mk 

p = o  

with M k  = min{[k/2], [J/2]}, where the symbol [XI means the largest integer less than 
or equal to x. 

As Aka, = 0 and B k -  lak- cc we have with (34) that the equation 

Aka,+ Bk- l d l k -  1 + Ck-2ak- 2 = 0, k = O , l ,  . . . ,  J 

does not determine the coefficient of: ofa,. The unknown coefficients are now the CT:. For 
these coefficients we get a system of linear equations by putting (38) into (26) and using 
the properties (32-34), where the number of equations is now less than the number of 
coefficients. The difference N J K ,  v) between the number of unknown coefficients and 
the number of equations determining the o i  depends on K and J : 

N,(K, V) = [P(K  - J + 2)/2] - [P((K - v)/2 - J + 1)/2] - [ P ( ( K  + v)/2 - J + 1)/2] (39) 

with P(x) = )(x + 1x1) and [XI as in theorem 2. We shall not give here in detail the system 
of linear equations for the 0:: this can easily be done. But we must keep in mind that 
N J K ,  v) is the number of linearly independent solutions of (2.8), and we will get these 
different solutions in a very natural manner by solving the system of linear equations 
for the 0:. We still remark that (39) is in accordance with the result ofRacah (1949), who 
has studied how many times an irreducible representation D ( J )  of SO(3) appears in the 
decomposition of an irreducible representation ( A l ,  A , )  of SU(3). 

4. Parity and symmetry properties of the hyperspherical functions 

A reflection of the position vectors of three particles in the centre of mass system does 
not change the internal coordinates r, t,b, cp and the two Euler angles a, j3, but the third 
Euler angle y goes over into y + IL, and therefore in a y-dependent D-function 

DhN(a, p, y + n, = ( - )NDhN(a, p, y)- (40) 
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Since ( -  1)N is always equal to ( -  l)K, (equation (24)), the parity of the hyperspherical 
functions FKvJMp is ( -  l)K. 

If we interchange the identical particles 1 and 2 then cp is changed to -cp and the 
three Euler angles transform as in equation (14). The coordinates I and $ remain 
unaltered. From the definition of the FKvJMp in (18) and the transformation properties 
of D-functions we have 

we get eigenfunctions of PI, which are symmetric (+ )  or antisymmetric ( - )  for even J 
and vice versa for odd J :  

For three equal particles one has to take into account (13) and (14). Since we have 
already studied the transformation properties under P,, it is sufficient to do the same 
for the cyclic permutation C;  all other group elements can be obtained by multiplication. 
The result for the F ,  and F - is : 

(43) 

The characteristic angle makes it necessary to distinguish between the several 
possible values of v. For IvI = 3n, n = 0, 1,2, .  . . , C becomes the identity matrix and 
F, and F -  are transformed separately corresponding to the two different one-dimen- 
sional irreducible representations of S, , the group of permutations of three particles, 
For IvI = 3n+l ,  we have 

and therefore we get a two-dimensional irreducible representation of S, .  For IvI = 3n + 2, 

C belongs to another two-dimensional representation of S, ,  which is equivalent to that 
one obtained for IvI = 3 n + l .  We thus have obtained functions F:IvIJMp, which are 
simultaneously eigenfunctions of the total angular momentum J and its projection J, 
and the group of transformations of three particles. Thus for problems with identical 
particles functions are available with defined behaviour with respect to exchange of 
identical particles. 

In this work we have studied the solutions of the angular part of the Hamiltonian for 
three free particles. In general the potential between three particles will depend on all 
three internal variables r, $, cp but never on the Euler angles a, b, y .  The solution Y of the 
Schrodinger equation 

(46) ( H ,  + w-, cp, $))Y = EY 
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can therefore be expanded into a series of hyperspherical functions for given J and M : 

\y = GKvp(r)F5’V’JM’. 
Kvrr 

For the functions GKVp(r) one obtains a system of differential equations 

[ h 2 (  d2 5 d K ( K + 4 ) )  ] 
- -+--- + E  GKvp(r) = 1 (Kvpl V/K‘v’p‘)GK,y,p,(r). 
2p dr’ r dr  r’ K ’ v ’ p ’  

(47) 

Calculations have been performed using equation (48) by several authors (Zickendraht 
1965, Simonov and Badalyan 1967, Tartakovskii and Kozlovskii 1973) for total angular 
momentum J = 0. Using the results of this work one can perform calculations for 
arbitrary J .  
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Appendix 

A.I .  Method of solution for J +  K odd 

For J +  K odd, ie N = - J +  1, - J  + 3, . . . J - 3, J - 1, we define in analogy with (25) 
J-dimensional vectors 

a: = ( ~ l ; - ’ + ~ , a ; - ’ + ~ , .  . . , ~ ; - ~ , a ; - ’ ) ,  k = 0, 1,. . . , ( K  - v)/2. (A.l) 
The system (24) takes the same form as (26), the only difference being that the matrices 
and vectors are J-dimensional. The analogue of theorem 1 is the following theorem. 

Theorem 3 

(i) The symmetric matrices A , ,  k = 1,2, .  . . , J have eigenvectors a, to the eigenvalue 
zero, ie 

Aka, = 0, k =  1,2 ,..., J .  ( A 4  
(ii) The vectors a,,  k = 1, .  . . , J form an orthogonal basis in the space of J-dimensional 
vectors. 

The eigenvectors a, have the following properties (a,, = O!): 

a: = 2 ~ [ (  J + N  ) (  J - N  )I1” 
( J  + N)/2 ( J  - N)/2 

a2 = N a ,  

ak+l = N a , - a [ J ( J + l ) - k ( k - l ) ] a , _ , ,  

A,a, = (1’- k2)a , ,  1 < k < J ,  l = O , 1 , 2  , . . . .  
2 < k < J - 1  

(A.3) 
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With these vectors the method of solving (24) is quite the same as in the case J + K even. 
The relation (39) still holds for this case. 

A.2. Solution for J = 0, 1,2 

According to the ansatz (21), 

~ ~ ~ ~ ~ ~ ( c t ,  b, y, cp, I)) = DL,(a, 0, y ) g F ” Y )  ( A 4  
N 

we give here the solutions g~r”p($) for v 2 0. In this section we put x = sin 21). PPqs)  
are the well known Jacobi polynomials with the normalization Pt9”‘(l) = (“:‘) as 
given in Erdelyi et a1 (1953). 

A.2.1. J = 0 

This case is well known. (Simonov 1966, Zickendraht 1965.) 

gPO($) = 4 3 4 $ )  

andthereforeK=0,2 ,4 ,6  , . . . ,  v =  - K , - K + 4  , . . . ,  K-4,K.  

(‘4.7) 

A.2.2. J = 1 

(i) K even, therefore v even and N = 0 

g?’($) = d$E+2)*(v-d4$) (‘4.8) 

K = 2,4,6, . . . ,  v = -K+2,  - K + 6 , . . . , K - 6 ,  K-2. 
(ii) K odd. Here we determine, according to (32), the basis vectors uo and a1 : 

1 -1 
U 0  = ’( \/ 2 1 1) u 1  =3( 1) 

The solutions g are 

(‘4.9) 

(A.lO) 

(A. 1 1) 
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A.2.3. J = 2 

(i) K odd, v odd, N = f 1 
Here we need the basis vectors U, and u2, according to (A.3) 

X xZ(K + v + 6) 
P$“;,pl( 1 - 2x2) -a; 

AK - v)(K - v + 4) 

X (1 ( ” +  1)/2)(1 -2x2)+a; X2 

(K - v + 2)/4 (“(K - v + 2114 v - 2) /4  

( K  - Y - 2)/4(1 - 2x7  p(2.(v+ l V 2 )  

(ii) K even, v even, N = -2,O, 2 
The basis vectors a o ,  a l ,  u2 are : 

Jt Jt 

Now we must distinguish between the cases v = 0, ie v < J ,  and v 
(a) v = 0 
(1) K/2 odd 

Nxz K + 6  
gioz(,/,) = ( -  1)”’(1- x’)”~ U:P{:!’~)/~(I - 2x2) - a2 - - 

3 K + 2  

p(2.1) ( K - 2 ) / 4 - l ( l  -2x2) 

(2) K/2 even (two linearly independent solutions) 

K + 4  
K 

g$021($) = ( -  1)”2(1 -x””“u”:-Plf,jy)- 1(1 -2x2) 

2, ie v 

(A.12) 

(A.13) 

J .  

(A.14) 

(A.15) 

(A.16) 
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1 2K+v+6  ( 2 , V / 2 + 1 )  PI;,!,?!. 2),4( 1 - 2x2) - 4x p ( K - v - 2 ) / 4 - 1 ( 1  -2x2) N x  4(v+3) 
-U1-( 6 K-v+2  K-v+2  

PI:'yly2_+;:/4- 1 - 2x2) . 1 x2 K + v + 6  
-U!- 3 K-v+2 

(A. 17) 

(2) (K - v)/2 even (two linearly independent solutions) 
g t ~ 2 1 ( $ )  = (- 1)(v-N)/2(1 +x)(v+N)/4(1 - X ) ( ~ - h ' ) / 4  

(A.18) 

(A.19) 
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